LOYOLA COLLEGE (AUTONOMOUS) CHENNAI – 600 034

Date: 03-05-2025 Dept. No.

B.Sc. DEGREE EXAMINATION – **CHEMISTRY**

THIRD SEMESTER - APRIL 2025

Max.: 100 Marks

Time: 01:00 PM - 04:00 PM			
SECTION A - K1 (CO1)			
	Answer ALL the Questions -		$(10 \times 1 = 10)$
1.	Answer the following		
a)	Define gamma function.		
b)	Describe partial differential equation.		
c)	State piecewise continuous function.		
d)	Write Newton's forward difference formula.		
e)	Define Group.		
2.	MCQ		
a)	$\frac{\partial(u,v)}{\partial(x,y)}$ denotes of u,v with respect to x,y .		
		(iii) Gauss - Seidel form	(iv) Lagrange form
b)	The solution of the differential equation y	$= (x-a)p - p^2$ is	
	(i) $y = x^2 + c$ (ii) $y = (x-a)^2 + c$	(iii) $y = (x-a)c + c$	$(iv) y = (x-a)c-c^2$
c)	$L\{\cos 4t\} =$		
	(i) $\frac{4}{s^2 + 2^2}$ (ii) $\frac{s}{s^2 + 2^2}$	$(iii) \frac{s}{s^2 + 4^2}$	$(iv) \frac{4}{s^2 + 4^2}$
d)	(i) $\frac{4}{s^2+2^2}$ (ii) $\frac{s}{s^2+2^2}$ (iii) $\frac{s}{s^2+4^2}$ (iv) $\frac{4}{s^2+4^2}$ Gauss seidel method is method		
	(i) Iterative (ii) Directive	(iii) Indirect	(iv) None
e)	Z, the set of all integers is		
	(i) a group under usual addition (ii) a group under usual multiplication		
	(iii) a non-abelian group (iv) not a group under any operation		
	SECTION A - K2 (CO1)		
	Answer ALL the Questions $(10 \times 1 = 10)$		
3. a)	Fill in the blanks $\frac{\pi}{2}$		
	$\int_0^{\frac{\pi}{2}} \sin^5 x \cos^3 x dx = \underline{\qquad}$		
b)	The solution of the differential equation $\frac{d^3y}{dx^3} - 3\frac{dy}{dx} + 2y = 0$ is		
c)	$L\{\frac{1-e^t}{t}\} = \underline{\qquad}.$		
d)	In numerical methods, a process of finding the unknown values that lie in between the data points is		
	called		
e)	The group of prime order is		
4.	True or False		
a)	$\Gamma(n+1)=(n)!$ when n is a positive integer.		
b)	A solution containing as many arbitrary constants as there are independent variables is called a general integral.		
c)	$L^{-1}\left\{\frac{1}{s^3}\right\} = t^2.$		

A sequence matrix is said to be diagonally dominant matrix, if for every row of the matrix, absolute value of diagonal element in a row is less than or equal to sum of the absolute values of other elements in that row. Every cyclic group is abelian. e) **SECTION B - K3 (CO2)** $(2 \times 10 = 20)$ Answer any TWO of the following Calculate $\iint xy \, dxdy$ taken over the positive quadrant of the circle $x^2 + y^2 = a^2$. Transform the partial differential equation $\frac{\partial^2 z}{\partial x^2} - 5 \frac{\partial^2 z}{\partial x \partial y} + 6 \frac{\partial^2 z}{\partial y^2} = 0$ to the form $\frac{\partial^2 z}{\partial u \partial v} = 0$ by substituting 6. $u = x + \alpha y$, $v = x + \beta y$ for suitable constants α and β and obtain its complete integral. 7. Determine $L^{-1}\left(\frac{1}{(s+1)(s^2+2s+2)}\right)$. 8. (i) If G is a group, prove that the identity element is unique. (ii) Prove that cancellation laws hold in the group. (4+6)SECTION C - K4 (CO3) $(2 \times 10 = 20)$ Answer any TWO of the following 9. By Newton-Raphson method, deduce the solution of the equation $x^3 + 2x^2 + 10x - 20 = 0$. Define a subgroup. Explain two characterizations for a subgroup. 10. Using Gauss elimination method, estimate the solution of the following system of equations 11. 3x + 4y - z = 8, -2x + y + z = 3, x + 2y - z = 2.12 Define cyclic group. Prove that $G = \{1, -1, i, -i\}$ is a cyclic group under usual multiplication. SECTION D - K5 (CO4) Answer any ONE of the following $(1 \times 20 = 20)$ Using Laplace Transforms, solve the equation $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} - 3y = \sin t$, given that $y = \frac{dy}{dt} = 0$ when t = 013. 14. State and prove the relationship between beta and gamma functions. SECTION E - K6 (CO5) Answer any ONE of the following $(1 \times 20 = 20)$ Solve $(D^2+4D+5)y = e^x+x^3+\cos 2x$. 15. 16. From the following data, using Newton's forward and backward interpolation method, produce the number of persons having income in between 1000-1700 (i) 3500-4000 Below 500 500-1000 1000-2000 2000-3000 3000-4000 Income No. of Persons 6000 4250 3600 1500 650

##